notbugAs an Amazon Associate I earn from qualifying purchases.
Want a good read? Try FreeBSD Mastery: Jails (IT Mastery Book 15)
Want a good monitor light? See my photosAll times are UTC
Ukraine
Port details
linux-ai-ml-env Linux Python environment for running Stable Diffusion models and PyTorch CUDA examples
1.0.0 sciencenew! on this many watch lists=0 search for ports that depend on this port Find issues related to this port Report an issue related to this port View this port on Repology. pkg-fallout Package not present on quarterly.This port was created during this quarter. It will be in the next quarterly branch but not the current one.
Maintainer: voxnod@gmail.com search for ports maintained by this maintainer
Port Added: 2025-03-28 12:39:07
Last Update: 2025-03-28 12:37:25
Commit Hash: 8f28236
Also Listed In: linux
License: MULTI
WWW:
https://github.com/ai-ml-env/ai-ml-env/
Description:
This port provides a Linux Python environment tailored for running Stable Diffusion models on NVIDIA GPUs. It includes: - A preconfigured Python environment with dependencies for Stable Diffusion and PyTorch examples. - PyTorch examples. - Sample scripts for running Stable Diffusion model and PyTorch examples.
Homepage    cgit ¦ Codeberg ¦ GitHub ¦ GitLab ¦ SVNWeb - no subversion history for this port

Manual pages:
FreshPorts has no man page information for this port.
pkg-plist: as obtained via: make generate-plist
Expand this list (29 items)
Collapse this list.
  1. usr/bin/accelerate
  2. usr/bin/accelerate-config
  3. usr/bin/accelerate-estimate-memory
  4. usr/bin/accelerate-launch
  5. usr/bin/accelerate-merge-weights
  6. usr/bin/diffusers-cli
  7. usr/bin/f2py
  8. usr/bin/fonttools
  9. usr/bin/huggingface-cli
  10. usr/bin/isympy
  11. usr/bin/normalizer
  12. usr/bin/numpy-config
  13. usr/bin/proton
  14. usr/bin/proton-viewer
  15. usr/bin/pyftmerge
  16. usr/bin/pyftsubset
  17. usr/bin/torchfrtrace
  18. usr/bin/torchrun
  19. usr/bin/tqdm
  20. usr/bin/transformers-cli
  21. usr/bin/ttx
  22. usr/share/ai-ml-env/dummy-uvm.so
  23. /usr/local/bin/ai-ml-env-bash
  24. /usr/local/bin/ai-ml-env-python
  25. /usr/local/share/ai-ml-env/stable-diffusion-sample.py
  26. @dir /usr/local/bin
  27. @owner
  28. @group
  29. @mode
Collapse this list.
Dependency lines:
  • linux-ai-ml-env>0:science/linux-ai-ml-env
To install the port:
cd /usr/ports/science/linux-ai-ml-env/ && make install clean
To add the package, run one of these commands:
  • pkg install science/linux-ai-ml-env
  • pkg install linux-ai-ml-env
NOTE: If this package has multiple flavors (see below), then use one of them instead of the name specified above.
PKGNAME: linux-ai-ml-env
Flavors: there is no flavor information for this port.
ONLY_FOR_ARCHS: amd64
distinfo:
TIMESTAMP = 1742925172 SHA256 (ai-ml-env/miniconda3.tar.gz) = 1d9eb42dd753f462f4ccd82ab7716561b90274eeaa45254fd50b879bb09537b7 SIZE (ai-ml-env/miniconda3.tar.gz) = 3511877484

Expand this list (2 items)

Collapse this list.

SHA256 (ai-ml-env/pytorch-examples-5dfeb46902baf444010f2f54bcf4dfbea109ae4d_GH0.tar.gz) = a024b134dfd1edba649289e551a0cd85bd22424dd76df4303b280e20757a602c SIZE (ai-ml-env/pytorch-examples-5dfeb46902baf444010f2f54bcf4dfbea109ae4d_GH0.tar.gz) = 7298483

Collapse this list.


No package information for this port in our database
Sometimes this happens. Not all ports have packages. This is doubly so for new ports, like this one.
Dependencies
NOTE: FreshPorts displays only information on required and default dependencies. Optional dependencies are not covered.
Build dependencies:
  1. linux-rl9-devtools>=0 : devel/linux-rl9-devtools
Runtime dependencies:
  1. linux-nvidia-libs>=0 : x11/linux-nvidia-libs
  2. linux-rl9-python39>=0 : lang/linux-rl9-python3
  3. nvidia-driver>=0 : x11/nvidia-driver
  4. linux_base-rl9>=9.2 : emulators/linux_base-rl9
Fetch dependencies:
  1. linux_base-rl9>=9.2 : emulators/linux_base-rl9
There are no ports dependent upon this port

Configuration Options:
No options to configure
Options name:
science_linux-ai-ml-env
USES:
linux:rl9
pkg-message:
For install:
To utilize CUDA support for PyTorch, both https://github.com/shkhln 's compatibility library preloading and Linux compatibility layer usage are required, as demonstrated in the provided demonstration scripts. To play with Stable Diffusion copy it to a user-writable directory, edit at will and launch it via ai-ml-env-python: cp /usr/local/share/ai-ml-env/stable-diffusion-sample.py ~/ ai-ml-env-python stable-diffusion-sample.py This will download data packages into ~/.cache/huggingface/hub/ during the first-time run. The port also provides Pytorch examples from the official GitHub repository. To run and modify these examples, copy them to a user-writable directory and then launch the entry point script via ai-ml-env-bash: cp -r /usr/local/share/ai-ml-env/pytorch-examples ~/pytorch-examples cd ~/pytorch-examples && ai-ml-env-bash ./run_python_examples.sh You can then run ai-ml-env-bash ./run_python_examples.sh clean to remove downloaded data or just remove the whole directory to clean up everything.
Master Sites:
Expand this list (1 items)
Collapse this list.
  1. https://arrowd.name/
Collapse this list.

Number of commits found: 1

Commit History - (may be incomplete: for full details, see links to repositories near top of page)
CommitCreditsLog message
1.0.0
28 Mar 2025 12:37:25
commit hash: 8f2823654667cc746695a83126e15c3172c6261dcommit hash: 8f2823654667cc746695a83126e15c3172c6261dcommit hash: 8f2823654667cc746695a83126e15c3172c6261dcommit hash: 8f2823654667cc746695a83126e15c3172c6261d files touched by this commit
Gleb Popov (arrowd) search for other commits by this committer
Author: Alexey Donskov
science/linux-ai-ml-env: Linux Python environment for running AI and ML stuff

Sponsored by:	Future Crew, LLC
Pull Request:	https://github.com/freebsd/freebsd-ports/pull/361

Number of commits found: 1